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Abstract: This paper outlines the derivation of conservation equations relevant to nanofluid 

dynamics in the absence of a solid matrix and extends the analysis to include porous media 

saturated by the nanofluid in the presence of a heat source. Utilizing a Darcy model for the 

momentum equation, our study investigates the potential impact of introducing a Brinkman 

term on the qualitative aspects of the equations. Through this investigation, we aim to provide 

insights into the behavior of nanofluids within porous media under the influence of thermal 

effects. 
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1. Introduction 

 

Nanofluids, colloidal suspensions comprising nanoparticles dispersed in a base fluid, have 

garnered significant attention in recent years due to their unique thermal and fluidic 

properties. These properties, arising from the interaction between nanoparticles and the base 

fluid, offer promising avenues for enhancing heat transfer efficiency and fluid flow 

characteristics in various engineering applications. From thermal management systems to 

advanced cooling technologies, the utilization of nanofluids presents an opportunity to 

address challenges in heat transfer and thermal regulation across diverse industries [1]-[3]. 

Research efforts in the field of nanofluids have been directed towards understanding their 

behavior under different conditions and environments. Central to this research endeavor is the 

derivation and analysis of conservation equations governing the transport phenomena 

associated with nanofluid flow and heat transfer. These equations serve as the cornerstone for 

theoretical modeling and numerical simulations aimed at predicting and optimizing nanofluid 

behavior in real-world scenarios [3]-[6]. 

Nanotechnology opens a novel realm of investigation focused on processing and 

manufacturing materials with crystallite sizes averaging below 100nm, termed nanomaterials 

[4]. Within the spectrum of nanomaterials, one encounters a diverse array of substances, 

including nanocrystalline materials, nanocomposites, carbon nanotubes, and quantum dots. 

On the other hand, the term "nanofluid" denotes a liquid containing a dispersion of submicron 

solid particles, commonly referred to as nanoparticles. The concept of nanofluids has 

garnered attention due to its distinctive characteristic of thermal conductivity enhancement 

[5]. This remarkable phenomenon has spurred discussions regarding potential applications in 

advanced nuclear systems. Furthermore, recent investigations have explored the use of 

nanofluid flow in nano-drug delivery, showcasing the versatility and promise of nanofluid 

technology in various domains [6]-[9]. 
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An investigation into convective transport phenomena in nanofluids, highlighting the 

persistent challenge of elucidating the abnormal increase in thermal conductivity and 

viscosity observed in these fluids [10]. Despite extensive research, a satisfactory explanation 

for this phenomenon remains elusive. While some scholars have posited that the dispersion of 

nanoparticles may contribute to convective heat transfer enhancement, Furthermore, the study 

dismisses turbulence and particle rotation as significant factors influencing heat transfer 

enhancement, as empirical calculations suggest their effects are negligible. In light of these 

findings, Buongiorno proposes a novel model grounded in the mechanics of 

nanoparticle/base-fluid relative velocity as a potential explanation for the observed 

enhancements in convective heat transfer. 

 

The onset of convection in a horizontal layer uniformly heated from below, specifically 

focusing on its manifestation in nanofluids, building upon the transport equations proposed in 

the literature [11]. In this project, we extend this inquiry to explore the analogous problem in 

the context of flow through a porous medium, known as the Horton-Rogers-Lapwood 

problem. We posit the presence of suspended nanoparticles in the nanofluid, facilitated by 

either surfactant or surface charge technology, to prevent particle agglomeration and 

deposition on the porous matrix [10]-[13]. 

For thoroughness, it is worth noting that the study [14]-[15] provided a significantly different 

approach to addressing the Bénard problem in the context of nanofluids. In their work, Kim 

et al. [11] opted to modify three key quantities within the definition of the Rayleigh number: 

the thermal expansion coefficient, the thermal diffusivity, and the kinematic viscosity. This 

departure from conventional treatments underscores the diverse methodologies employed in 

exploring convective phenomena in nanofluids. 

 

The modeling of a microchannel heat sink utilizing a nanofluid within a porous medium 

framework. Additionally, previous studies have examined convection within porous media, 

incorporating the phenomenon of thermophoresis particle deposition, as demonstrated by 

research such as that conducted by [10]- [15]. However, it is crucial to note that a 

distinguishing characteristic of nanofluids is their ability to mitigate particle deposition 

through specialized treatments, effectively rendering it negligible. This feature underscores 

the unique properties and potential applications of nanofluids in heat transfer and fluid 

dynamics contexts. 

 

Similarly, it seems that research focusing on Brownian motion within porous media primarily 

pertains to deposition phenomena, which may not directly align with the scope of the current 

investigation. In our study, we have instead built upon the earlier work, extending their 

findings to further explore the dynamics and behavior of nanofluids in porous media under 

various conditions. This extension allows us to delve deeper into the intricate interplay 

between nanofluid flow, heat transfer, and porous media characteristics, offering valuable 

insights into this complex and important area of research. 

 

This paper is structured as follows.  An overview of nanoparicles, nonofulid applications in 

modern mathematical studies are discussed in section I. Section II presents the Pertubation 

soluation for nonofluid flow. Results and discussions are presented in section III. Finally, the 

conclusion of the work is given in section IV. 
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Solution of Perturbation for Nanofluid flow 

This section presents a superimpose perturbations solution. The superimpose perturbations 

for a basic solution is given by equation .1. 

 

𝑉 = 𝑉1

𝑝 = 𝑝𝑏 + 𝑝
′

𝑇 = 𝑇𝑏 + 𝑇
′

∅ = ∅𝑏 + ∅
′}
 

 
              (1) 

A highly simplified equation from the (1) is given by (2)-(5).                             
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One should note that some parameters are not involved in these and subsequent equations and 

those are just a measure of the basic static pressure gradient. For the case of a regular fluid 

(not a nanofluid) the parameters ,Rn  AN  and BN  are zero, the second term in Eq. (4) is 

absent because of 0/ = z and then Eq. (5) is satisfied trivially. The remaining equations 

are reduced to the familiar equations for the Horton–Roger–Lapwood problem. 

      The six unknowns, such as  ',',',',',' Tpwvu  from the equations can be reduced to 

three by operating on Eq. (2) with curlcurlez 


 and using the identity property. 
2−= graddivcurlcurl   

''' 222 HH RnTRaw +=            (6) 

In (6), the 
2

H   is the two-dimensional Laplacian operator for the given parameters on the 

horizontal plane. Further, method of normal modes is useful for the solution of the 

differential equations and the boundary conditions, which constitute a linear boundary-value 

problem. Now, we can write the (7). 
)exp()](),(),([)'','( imyilxstzzzWTw ++=        (7) 

and substitute into the differential equations to obtain (8) 
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In (11),  
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Thus   is a dimensionless horizontal wave number. 

      For neutral stability the real part of s  is zero. Hence, we can write ,is = , where 
  is real and is a dimensionless of frequency. 

Galerkin-type weighted residuals method can be applied to obtain an approximate solution to 

the system of Eqs. (8)-(12). We choose as trial functions (satisfying the boundary 

conditions) 
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Now one can substitute the equations and simplify of (9) -(11) and make the expressions on 

the LHS (left hand side) of the expressions of the residuals orthogonal to the trial functions.  

The resultant is a system of three-N linear algebraic equations in the N3  unknowns 

NpCBA ppp ......2,1;,, = . The vanishing of the determinant of coefficients produces the 

eigenvalue equation for the system and one can note that the 𝑅𝑎 is an eigenvalue. Thus Ra

is found in terms of the other parameters.  

 

2. Results and Discussions 

 

A sketch of 








+


Le
NRn A

 versus Ra  is given in  Fig. 1. The sketch is made on the 

assumption that ( )  /LeN A +  is greater than unity. If that inequality is reversed than the 

labels on the axes need to be swapped around.  

The literature of references [9]-[12] suggests that the analysis predicts a significant reduction 

in the critical Rayleigh number for the bottom-heavy case, whereas our analysis indicates an 

increase in the critical Rayleigh number for non-oscillatory instability in this scenario. 

Notably, Tzou et al. [9] does not provide a physical explanation for this substantial reduction. 

It is worth mentioning that Tzou employs the symbol Le to represent a Lewis number divided 

by the nanoparticle fraction decrement, rather than a regular Lewis number. Consequently, 

the parameter Le tends to infinity as the nanoparticle fraction decrement tends to zero, i.e., in 

the limit as the nanofluid is replaced by a regular fluid. Based on this observation, we 

hypothesize that the solution obtained. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Stability and instability domains of the proposed study. 
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3. Conclusion 

 

In this study, we have implemented a Darcy model to describe the momentum equation. We 

anticipate that introducing a Brinkman term into this equation will not yield significant 

qualitative alterations. Instead, we expect that the value denoted by 40 will be replaced by a 

larger value, 𝑅𝑎0,contingent upon the hydrodynamic boundary conditions, and will escalate 

with the augmentation of the Darcy number. Consequently, the increase in this value implies 

that the fluctuation in the value of 𝑅𝑎0 , for a constant value of 𝑅𝑛 , diminishes 

proportionately to the value of 𝑅𝑎0. For instance, transitioning from free-free boundary 

conditions to more restrictive rigid-rigid boundary conditions, which augments the value, 

results in a reduction in the sensitivity to a given alteration. 

 

4. References 

 

1.  Wael A. Fouad, “Thermal Conductivity of Pure Fluids and Multicomponent Mixtures 

Using Residual Entropy Scaling with PC-SAFT—Application to Refrigerant Blends”, 

Journal of Chemical & Engineering Data 2020 65 (12), 5688-5697. DOI: 

10.1021/acs.jced.0c00682 

2.  Golovin, D.Y., Samodurov, A.A., Tyurin, A.I. et al. New Measurement Method of 

Thermal Conductivity of Fluids. Russ Phys J 65, 1755–1757 (2023). 

https://doi.org/10.1007/s11182-023-02826-2  

3.  Temel Z, Cakir M. A Robust Numerical Method for a Singularly Perturbed Semilinear 

Problem with Integral Boundary Conditions. Contemp. Math. [Internet]. 2024 Jan. 23 

[cited 2024 Mar. 13];5(1):446-64. Available from: 

https://ojs.wiserpub.com/index.php/CM/article/view/3020  

4.  S. Choi, Enhancing thermal conductivity of fluids with nanoparticle, in: D.A. Siginer, 

H.P. Wang (Eds.), Developments and Applications of Non-Newtonian Flows, ASME 

FED, vol. 231/ MD-vol. 66, 1995, pp. 99–105.  

5.  H. Masuda, A. Ebata, K. Teramae, N. Hishinuma, Alteration of thermal conductivity 

and viscosity of liquid by dispersing ultra-fine particles, Netsu Bussei 7 (1993) 227–

233.  

6.  J. Buongiorno, W. Hu, Nanofluid coolants for advanced nuclear power plants, Paper 

No. 5705, in: Proceedings of ICAPP’05, Seoul, May 15–19, 2005. 

7.  C. Kleinstreuer, J. Li, J. Koo, Microfluidics of nano-drug delivery, Int. J. Heat Mass 

Transfer 51 (2008) 5590–5597. 

8.  J. Buongiorno, Convective transport in nanofluids, ASME J. Heat Transfer 128 (2006) 

240–250.  

9.  D.Y. Tzou, Instability of nanofluids in natural convection, ASME J. Heat Transfer 130 

(2008) 072401. 

10.  D.Y. Tzou, Thermal instability of nanofluids in natural convection, Int. J. Heat Mass 

Transfer 51 (2008) 2967–2979. 

11.  J. Kim, C.K. Choi, Y.T. Kang, M.G. Kim, Effects of thermodiffusion and nanoparticles 

on convective instabilities in binary nanofluids, Nanoscale Microscale Thermophys. 

Eng. 10 (2006) 29–39.  

12.  J. Kim, Y.T. Kang, C.K. Choi, Analysis of convective instability and heat transfer 

characteristics of nanofluids, Int. J. Refrig. 30 (2007) 323–328. 

13.  T. H. Tsai, R. Chien, Performance analysis of nanofluid-cooled microchannel heat 

https://museonaturalistico.it/
https://doi.org/10.1007/s11182-023-02826-2
https://ojs.wiserpub.com/index.php/CM/article/view/3020


NATURALISTA CAMPANO 
ISSN: 1827-7160 
Volume 28 Issue 1, 2024 

 

 

https://museonaturalistico.it                                                   660 

sinks, Int. J. Heat Fluid Flow 28 (2007) 1013–1026. 

14.  A. J. Chamkha, I. Pop, Effect of thermophoresis particle deposition in free convection 

boundary layer from a vertical flat plate embedded in a porous medium, Int. Commun. 

Heat Mass Transfer 31 (2004) 421–430.  

15.  A.V. Kuznetsov, A.A. Avramenko, Effect of small particles on the stability of 

bioconvection in a suspension of gyrotactic microorganisms in a layer of finite length, 

Int. Commun. Heat Mass Transfer 31 (2004) 1–10. 

 

https://museonaturalistico.it/

