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Abstract: Rail abnormalities can lead to traffic accidents causing personal and property losses, making timely 

detection of these anomalies crucial for rail transportation. However, the current discovery of rail abnormalities 

relies mainly on subjective human observation, lacking mature machine vision-based detection methods. This 

study proposes a new AFNN detector based on the extraction of Haralick features and the development of a fuzzy 

neural network for identifying rail abnormalities. Experimental results demonstrate that this method achieves rail 

abnormality recognition, with the identification performance of Haralick features surpassing that of colour 

features and HU features, achieving an accuracy of 0.9186. 
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1. Introduction 

 

Steel rails constitute a vital component of railway infrastructure (Figure 1). Their primary function is to guide the 

wheels of locomotives and rolling stock, bearing immense pressure while transmitting it to the sleepers. Steel rails 

are required to furnish a continuous, smooth, and minimally resistant rolling surface for the wheels. In electrified 

railways or sections with automatic block signalling, rails also serve as conductors for track circuits, facilitating 

the return flow of traction currents. 

 

 
Figure 1: Wheels and rails 

 

As a pivotal component of rail transportation, rails bear direct loads from heavy vehicles and encounter impacts 

and friction from wheelsets. Moreover, being exposed to outdoor conditions, such as sunlight, rain corrosion, steel 

oxidation, and various forces, rail surfaces manifest diverse forms of anomalies. These irregular, multifarious, and 

multi-scaled anomalies pose significant challenges (Figure 2). In operational maintenance, failure to promptly 

detect these damages can lead to severe safety hazards. The occurrence of accidents could result in incalculable 

human casualties and property loss. Hence, timely detection of rail anomalies is paramount for mitigating risks 

and ensuring the safe operation of railways before catastrophic incidents occur.  

 

 

Normal 

Abnormal 

Scratch Block Chap Scab 
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Figure 2: Normal rail and abnormal rail 

 

2. Literature Review 

 

Min et al. (2018) introduced a real-time detection system for rail surface defects utilizing machine vision. By 

employing the H component of the hue, saturation, and lightness (HSL) space as a feature, rail regions were 

extracted from panoramic images, followed by surface defect segmentation using image morphological operations. 

Subsequently, algorithms were validated through the construction of a prototype detection system. He et al. (2014, 

2016) proposed rail surface defect detection systems based on reverse Perona-Malik (P-M) diffusion and 

background difference techniques. Li and Ren (2012a, 2012b) focused on visual characteristics of defect targets, 

designing contrast enhancement algorithms suitable for rail defect detection. They introduced defect localization 

algorithms based on projection contours and defect detection algorithms utilizing proportionally enhanced 

maximum entropy. Zhang et al. (2018) utilized curvature filtering and an improved Gaussian mixture model to 

detect rail surface defects, enhancing identification precision through region of interest (ROI) detection extraction 

algorithms, grayscale contrast algorithms, and curvature filtering. Min et al. (2018) proposed a method based on 

image grayscale gradient features for rail surface defect detection, effective in identifying scars and crack defects 

while mitigating external environmental interference in machine vision detection of rail surfaces. Additionally, 

Karakose et al. (2018, 2017) developed computer vision-based techniques for condition monitoring and fault 

diagnosis of rail components and tracks, utilizing camera installations on simulated train bottoms and tops. Their 

approach involved Canny edge detection and Hough transform methods for target detection, followed by decision 

tree classification for identifying track types and classifying surface anomalies.  

 

Despite meeting real-time detection requirements, these methods exhibit high false alarm rates and challenges in 

accurately identifying anomalous targets. This study endeavours to address these issues by extracting Haralick 

features and employing a novel AFNN detector based on fuzzy neural networks, thus offering a fresh perspective 

for rail anomaly detection research. 

 

3. Methodology 

 

3.1 Dataset and Preprocessing 

In the realm of railway engineering, datasets focusing on the classification and detection of railway defects have 

garnered attention (Zendel et al., 2019). However, the availability of authentic datasets specifically tailored for 

railway surface defects remains limited. Gathering data on rail surface anomalies poses challenges due to their 

random distribution and operational constraints in high-speed railway management. The NEU dataset (Song et al., 

2013) primarily addresses surface defect issues in hot-rolled steel strips, encompassing anomalies such as patches, 

cracks, and scratches. Although comprising 1800 images and sharing the same material as rails, it fails to 

comprehensively represent rail surface anomalies. The Rail-5k dataset, compiled by Zhang et al. (2021) consists 

of 5000 images of railway defects, aiming to identify the most common 13 types of defects. Regrettably, these 
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datasets remain unpublished for public use. Hence, there is an urgent need to develop more suitable datasets for 

rail anomaly research. To obtain the dataset for this study, we captured 427 images on-site from various locations 

in Yunnan Province, China. These images were divided into training and validation sets in a ratio of 0.8:0.2. The 

collected data underwent the following preprocessing steps: 

1. Cropping images to a size of 448x448 pixels cantered on the anomalous regions. 

2. Converting colour images to grayscale. 

3. Performing histogram equalization. 

4. Employing Gaussian filtering for noise reduction. 

 

Normal Scratch Block Chap Scab 

     

     

     

Figure 3 display the grayscale images of rails post-processing. 

 

3.2 Feature Extraction 

A pivotal aspect of classification recognition lies in feature extraction, a methodological process where computers 

extract characteristic information from images. The primary objective is to obtain relevant information from the 

low-dimensional spatial information representation of raw data. In this study, Haralick Features were utilized for 

anomaly recognition. Haralick features, widely employed in texture analysis, are instrumental in image processing 

and computer vision. These features describe texture characteristics within images and aid in identifying texture 

disparities among different regions. Consequently, they find extensive application in various image classification, 

segmentation, and recognition tasks. Calculation of Haralick features relies on the Gray Level Co-occurrence 

Matrix (GLCM), a statistical matrix describing image texture. The GLCM signifies the relative positional 

relationships between different pixel values in an image, constructed by tallying the co-occurrence frequencies of 

grayscale levels of each pixel with its neighboring pixels. It reflects comprehensive information about grayscale 

variations concerning direction, adjacent spacing, and intensity changes, analyzing local patterns and their 

arrangement rules. In essence, the GLCM computes the probability of a pixel with a grayscale value i at distance 

(dx, dy) from another pixel having a grayscale value j. Formula 1 is the mathematical expression for the GLCM, 

where d represents the relative distance in terms of pixel counts, θ denotes the direction (typically chosen as four 

directions: 0°, 45°, 90°, and 135°), and (x, y) represent the pixel coordinates within the image. 

 

(1) 

 

As illustrated in Figure 4, the x-direction corresponds to the columns of the image, while the y-direction 

corresponds to the rows. F(x, y) = i represents the pixel value at coordinates (x, y), and the count (normalized: 

probability) of occurrences where f(x + dx, y + Dy) = j at a distance (dx, Dy) needs to be statistically recorded. 

The selection of (dx, Dy) induces variations in the angle, typically chosen as 0°, 45°, 90°, and 135°. 
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Figure 4: Statistical direction of pixel value i 

 

The constructed co-occurrence matrix serves as the basis for extracting texture features. In this study, the texture 

features of images were computed using 13 parameters of Haralick features. These 13 feature parameters of 

Haralick features include Energy (Energ), Variance (Sosvh), Contrast (Contr), Correlation (Corrm), Homogeneity 

(Homom), Sum average (Savgh), Sum variance (Svarh), Sum entropy (Senth), Entropy (Entro), Difference 

variance (Dvarh), Difference entropy (Denth), Information measure of correlation1 (Inf1h), and Information 

measure of correlation2 (Inf2h). Table 1 elucidates the physical interpretations and computational formulas 

associated with these 13 parameters of Haralick features. 

 

Table 1: Physical meanings and computation formulas of parameters of Haralick features. 

Parameters Physical Meaning Formula 

Energ 
Measures the uniformity and regularity of image 

texture 
( )

2
,=

i j
jipEnerg  (2) 

Sosvh 
Characterizes irregularities and variations in image 

texture 
( ) ( )jipiSosvh

i j
,

2

 −=   (3) 

Contr 
Assesses the degree of contrast between different 

grayscale levels in the image 
( )  njijipnontr
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i
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Corrm 

Quantifies the correlation between GLCM 

elements, reflecting the linear characteristics of 

image texture 

( ) ( )
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Homom 
Signifies the degree of consistency among texture 

elements in the image ( )
( )jip

ji
Homom

i j
,

1

1
2

−+
=
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Savgh 

Reflects the average distribution of texture 

elements with the same grayscale level in the 

image 

( )jiipSavgh
Ng

i yx ,
2

2 = +=  (7) 

Svarh 
Measures the distribution variance of texture 

elements with the same grayscale level 
( ) ( ) = +−=

Ng

i yxS ipfihS
2

2

2
var  (8) 

Senth 

Represents the distribution entropy of texture 

elements in the image, indicating the uncertainty of 

their distribution 

( ) ( )  Syx

Ng

i yx fipipSenth =−= += + log
2

2
 (9) 

Entro 

Measures the overall entropy of GLCM  elements, 

representing the overall uncertainty of image 

texture 

−
i j

jipjipntro )),(log(),(:E  (10) 

Dvarh 
Reflects the variance of differences between 

different grayscale levels in the image 
( )

−

= −=
1

0

2var
Ng

i yx ipihD  (11) 

Denth 

Reflects the variance of differences between 

different grayscale levels in the image, indicating 

the uncertainty of differences 

( ) ( ) ipipDenth yx
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−

= −−= log
1
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Inf1h 

Related to correlation but incorporates the concept 

of entropy in its calculation, providing a more 

comprehensive description of the correlation and 

uncertainty of image texture 
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Inf2h 

Related to correlation but employs different 

mathematical formulas to provide a more precise 

description of the correlation and uncertainty of 

image texture 

  ( )2

1

22exp12 HXYHXYhInf −−−=  (14) 

 

3.3 AFNN Detector 

The Adaptive Fuzzy Neural Network (AFNN) possesses learning and self-adjusting capabilities, continuously 

enhancing network performance, thereby well-suited to address the complexities encountered in rail anomaly 

detection. Consequently, leveraging the extracted low-order feature data, this study constructed a Fuzzy Anomaly 

Detector (AFNN) utilizing a combination of Forward Neural Network (FNN) and Adaptive Neuro-Fuzzy 

Inference System (ANFIS) implemented within the PyTorch framework. During the training phase, AFNN 

employed a cross-entropy loss function and adjusted learning rates using a learning rate scheduler. In the testing 

phase, the model computed and outputted accuracy metrics on the test set, saving model weights based on a 

predefined accuracy threshold (0.85). Additionally, the model defined a confusion matrix function to visualize 

classification results on the test set. 

 

The AFNN classifier comprises five linear layers, namely the fuzzy membership function layer, fuzzy rule layer, 

fuzzy inference layer, input layer, and output layer. By amalgamating the fuzzy membership function layer, fuzzy 

rule layer, and fuzzy inference layer, the AFNN introduces fuzzy logic principles to model the intricate 

relationships between inputs and outputs. Model parameters are initialized using a uniform distribution, with Tanh 

serving as the activation function. The extracted Haralick Features are inputted into the AFNN classifier for rail 

anomaly classification. Figure 5 illustrates the forward propagation process and network structure of the AFNN 

classifier. 

 

 
Figure 5: Network structure of AFNN 
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 This sequence of operations ensures that the model learns the complex relationship between inputs and outputs 

through the combination of fuzzy membership functions, fuzzy rules, and fuzzy inference. Throughout the entire 

process, linear mappings are achieved through the Linear layer, while non-linear mappings are facilitated by the 

Tanh activation function. The Tanh activation function (hyperbolic tangent function) stands as a commonly 

utilized non-linear activation function, typically employed within neural network hidden layers. It compresses 

input values into the interval [-1, 1] and exhibits an S-shaped curve. Formula 15 illustrates the definition of the 

Tanh activation function, where e represents the base of the natural logarithm and x denotes the input value.  

                                                              𝑇𝑎𝑛ℎ(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥                                                       （15） 

 

The Cross-Entropy Loss function, utilized in this study, serves as a metric for assessing the disparity between the 

probability distributions of predicted values and actual labels. Notably, it possesses characteristics of simple 

gradient computation, rapid gradient descent, and insensitivity to outliers. Herein, the Cross-Entropy Loss is 

defined as the loss function. Formula 16 delineates the calculation formula for the Cross-Entropy Loss, where N 

represents the number of samples, yi,k denotes the true label of the k-th category for the i-th sample, and pi,k 

signifies the predicted probability of the k-th category for the i-th sample. 

                                       𝑙𝑜𝑠𝑠 = −
1

𝑁
∑ ∑ 𝑦𝑖,𝑘 𝑙𝑜𝑔(𝑝𝑖,𝑘)𝐾

𝑘=1
𝑁
𝑖=1                                   （16） 

 

In summary, the AFNN classifier represents an adaptive fuzzy classifier based on Haralick features. A distinctive 

feature of this classifier is the incorporation of fuzzy logic into neural networks, achieved through the 

amalgamation of fuzzy membership function layer, fuzzy rule layer, and fuzzy inference layer. This integration 

enables the model to effectively handle fuzzy information and uncertainty. Moreover, the model exhibits 

adaptability, capable of learning the fuzzy characteristics and intricate rules of input data, culminating in the final 

output through fuzzy inference. 

 

3.4 Results evaluation 

The recognition outcomes are evaluated using Precision, Recall, and Accuracy based on True Positive (TP), False 

Positive (FP), True Negative (TN), and False Negative (FN). Herein, TP represents the number of anomalous rails 

correctly identified as anomalies by the model; FP denotes the number of normal rails erroneously classified as 

anomalies by the model; TN signifies the number of normal rails incorrectly classified as anomalies by the model; 

while FN indicates the number of anomalous rails erroneously classified as normal by the model. 

Precision: Precision refers to the proportion of truly anomalous samples among those predicted as rail anomalies 

by the model. It measures the accuracy of the model in predicting anomalies. Higher precision signifies greater 

reliability in anomaly detection. Formula 17 illustrates the calculation method for Precision. 

                        𝑃𝑟 𝑒 𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                        (17)

 

Recall: The recall rate refers to the proportion of all actual rail abnormal samples that the model successfully 

predicts as abnormal. The recall rate is also called True Positive Rate. Calculation 18 shows the calculation method 

of Recall. 

                                                          

𝑅𝑒 𝑐 𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                          (18)

 

Accuracy: Accuracy refers to the ratio of the number of samples correctly predicted by the model to the total number 

of samples. It measures the overall correctness of the model across all categories. Equation 19 shows how Accuracy 

is calculated. 

                         𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                 (19) 

 

The evaluation metrics are crucial tools for assessing the results, providing quantifiable measures of the 

experimental methods' performance. This study comprehensively investigates the recognition performance of 

Haralick feather in identifying rail anomalies under different color models, by considering accuracy, recall, and 

precision. 

 

4. Results and Discussion 

 

The experiment utilized 427 preprocessed images of rail anomalies, comprising 200 normal instances, 56 scratches, 

60 blocks, 56 chaps, and 55 scabs. Following the extraction of Haralick Features, the images were inputted into 

the developed AFNN classifier for anomaly recognition. The evaluation of results employed metrics such as True 
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Positive (TP), True Negative (TN), False Positive (FP), False Negative (FN), and confusion matrices. Additionally, 

the study conducted comparative analyses with HU features and color features extracted from color images. Tables 

2-4 present the rail anomaly recognition results obtained using Haralick Features, color features, and HU features. 

Furthermore, Figure * depicts the confusion matrices illustrating these results. 

 

Table 2: Recognition results utilizing Haralick Features. 

Type Normal Scratch Block Chap Scab 

TP 39 13 11 8 8 

FP 3 0 1 1 2 

TN 44 390 72 145 74 

FN 0 1 2 2 2 

Precision 0.9286 1.0000 0.9167 0.8889 0.8000 

Recall 1.0000 0.9286 0.8462 0.8000 0.8000 

Accuracy 0.9651 0.9975 0.9651 0.9808 0.9535 

AVG-accuracy 0.9186 

 

Table 3：Recognition results utilizing Color Features. 

Type Normal Scratch Block Chap Scab 

TP 35 10 15 9 5 

FP 2 3 1 3 5 

TN 45 365 68 121 73 

FN 4 0 2 5 3 

Precision 0.9459 0.7692 0.9375 0.7500 0.5000 

Recall 0.8974 1.0000 0.8824 0.6429 0.6250 

Accuracy 0.9302 0.9921 0.9651 0.9420 0.9070 

AVG-accuracy 0.8605 

 

Table 4：Recognition results utilizing HU Features. 

Type Normal Scratch Block Chap Scab 

TP 44 6 12 8 11 

FP 45 2 3 1 7 

TN 28 419 72 167 68 

FN 2 11 7 13 1 

Precision 0.4944 0.7500 0.8000 0.8889 0.6111 
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Recall 0.9565 0.3529 0.6316 0.3810 0.9167 

Accuracy 0.6050 0.9703 0.8936 0.9259 0.9080 

AVG-accuracy 0.6512 

 

  
                               Haralick feature                                              Colour feature 

 
HU feature 

Figure 6: Confusion matrix of validation set 

 

From the figures and tables, it is evident that the AFNN detector exhibits commendable performance in rail 

anomaly recognition, demonstrating proficiency in identifying various types of rail anomalies. Notably, Haralick 

Features outperform the other two types of features, achieving a superior performance in rail anomaly recognition 

with a multi-classification recognition accuracy of 0.9186. Specifically, the recognition accuracies for the five rail 

anomaly categories, namely Normal, Scratch, Block, Chap, and Scab, reached 0.9651, 0.9975, 0.9651, 0.9808, 

and 0.9535, respectively. 

 

5. Conclusion 

 

In exploring effective features for rail anomaly recognition, this study employed Haralick Features and a newly 

developed AFNN detector based on model neural networks for multi-classification recognition of rail anomalies. 

Experimental results indicate the commendable detection efficacy of the AFNN detector in rail anomaly detection, 

with Haralick Features exhibiting superior recognition performance compared to color features and HU features, 

achieving an overall accuracy of 0.9186. 
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