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Abstract: The cubic Hermite collocation method (CHCM) is a numerical technique for solving differential equations using
Cubic Hermite interpolation. Cubic Hermite interpolation is a way of constructing a polynomial that matches not only the
function values, but also the derivatives at some given points. The accuracy, efficiently, simplicity and reliability of CHCM
performs are demonstrated through some numerical examples. The analysis of convergence of the method is briefly
discussed and the fourth order is shown. The Numerical results have been presented in tabular and graphical forms.
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1 Introduction

The numerical analysis literature contains vast on the solution of differential equations which arise in the
mathematical modeling via convection diffusion process (Grahs (1974), Al-Jabari 1994, Potucek 1997).
Orthogonal collocation method (Maleknejad et al. 2006, Shen & Lin 2006 and Soliman & Alhumaizi (2004).) is
well established as robust techniques for solving differential equations. Lagrange interpolating approximations
to boundary element equations are not new either. Initially introduced by Carey & Finlayson 1975 and
developed further by a number of authors (Arora et. al. 2006, Islam et al. 2010, Kim & Shin 2002) they have not
been widely adopted due to the additional degrees of freedom introduced by the derivatives. It increases the
number of collocation equation at node points. To overcome this problem by technique of Cubic Hermite
interpolating has been used in association with orthogonal collocation.

In Hermite collocation method, the approximating function is discretized in terms of cubic Hermite polynomial
and then orthogonal collocation is applied. Due to continuity property of cubic Hermite polynomials there is no
need add the additional property that approximating function and its first derivative should be continuous at
nodes points.

In the present study, cubic Hermite collocation method is use for solving differential equations.

2 Hermite collocation method
In present study, cubic Hermite interpolating polynomials as discussed by (Dyksen & Lynch 2000 and Brill
2002) have been followed to solve the boundary value problems numerically and are defined as:
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These piecewise cubics are designed such thatP;(&;) = §;;,P;'(§;) = 0, ﬁj(fi) = O,ﬁj'(fi) = §j;.
By rearranging the terms in eq. (1) and eq. (2), Hermite interpolating polynomials can be rewritten as:
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The first order derivative of cubic Hermite basis is defined as:
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The behavior of Hermite cubics Py, P;, P, P is shown in Figure 1.

3 Collocation Points

In Hermite collocation, the choice of collocation points depends upon the degree of the interpolating
polynomial. In present study, cubic Hermite polynomials have been taken as interpolating polynomials,
therefore, two collocation points have been taken within each interval [&.1, &] and [, &+1]. To apply orthogonal
§=$j-1

j

§; —&j—ysuchthat { = 0when ¢ = ¢&;_; and { = 1 whené = &;. Roots of shifted Legendre polynomial of order
two have been calculated as:

V3t :
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collocation within each interval [&.1, &] a new variable ¢is introduced in such a way that { = where i; =

4 Application of Hermite Collocation Method to Initial Boundary Value Problems
Consider the following initial boundary value problem:

Ve =g — @@y —BEY + () V(&) eQx(0,T) (6)
where y, = Z—’T', Yee = ‘;%, ye = %, and f(¢) is a continuous function of & @(&) and (&) are continuous

functions of & such that a(¢) and B(&) are positive bounded functions possessing continuous derivatives for all
e Q.
The boundary conditions along the layers are assumed to be of Robbinson’s type or mixed conditions:

y—€y: =0 até=0,ve>0 )
ye=0 até=1,ve>0 (8)
Initially, it is assumed that yo =y(&, 0) =1, Ve Q 9
The cubic Hermite approximation is defined as:

y(&, 1) =X a(DH(§), V e [Gi, Ginl (10)

Where,a; (7)’s are the continuous functions of ‘z’. The continuous functions ai(z)’s are arranged in such a way in
the interval [&i1, &] and [&, &i1] that the problem of double collocation omits out. The behaviour of these
polynomials in the interval [&i.1, &] and [&;, &i+a] is shown in Figure 2.

5 Rate of Convergence

Next step of the present study is the determination of rate of convergence of the given numerical technique of
Hermite collocation. To determine the rate of convergence, method of (Farrell & Hagarty 1991) has been
followed. Define the maximum pointwise error as:
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B =" =7, (11)

where ¥™is the cubic Hermite approximation of y(¢, =) at the m node points. The additional node points in the
spatial direction can be added by selecting the mid points of the node points &’s in the spatial direction for 1 <1
< m. The €-uniform error is defined as:

E™ = mngé" (12)

The rate of convergence is calculated as:
m _ log(E)-log(EZ™)

Pe = 10g(2) (13)
The e-uniform rate of convergence is calculated as:

log(E™)~log (E*™)
P e (14)

Numerical Examples
Problem 1
Consider linear advection-diffusion equation with mixed boundary conditions and

a(g) =pE) =1, (&)= cosx.

Oy _ 5%y 0y _
%% a y+cosmé (15)

Boundary conditions are given as:

yon-z2 =o v 1e(0,T] (16)
08l

A E—) Vv 1€(0,T] (17)
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Initially, it is assumed that y(&, 0) = 1, V & € Q. In Figure 4, the behaviour of solution profiles is shown at
different time intervals for € = 2. In Figure 5, the behaviour of solution profiles is shown for different values of
€ for 32 mesh points at & = 1. The solution profile for € = 0.1 converge to 1 smoothly as z increases as compare
to the profiles of € = 0.01 and € = 0.001. The smoothness in the profiles for small values of € can be obtained by
increasing the number of mesh points. The 3D behaviour of y(&, 7) for different values of € is shown in Figure 6a
to 6¢.

In Table 1, the e-uniform rate of convergence is shown. It is observed that the €-uniform rate of convergence
varies from 0.98422 to 0. 99567 for 8 to 64 mesh points, respectively.

Problem 2

Consider linear advection-diffusion equation with mixed boundary conditions and

@) =pE) =& =1

Wy _ 0% 9y _
2 —Cagz g Y1 (18)

Initial and boundary conditions remain same as of the Problem 1. In Figure 7, the solution profiles are shown at
different time intervals for € = 2. In Figure 8, the behaviour of solution profiles is shown for different values
of € at £ = 1 for 32 mesh points. The graphs are found to be approaching to zero smoothly as time increases. The
3D behaviour of y(¢, 7) for different values of € is shown in Figure 9a to 9c.
In Table 2, the €-uniform rate of convergence is shown for Problem 2. It is observed that the €-uniform rate of
convergence is 0.96893 to 0. 99589 for 8 to 64 mesh points, respectively.
Problem 3
Consider linear advection-diffusion equation with mixed boundary conditions and
a(§) =@1+¢»,pE) =1andf(¢) = &

2
e RN OE SRS (19)
Initial and boundary conditions remain same as of the Problem 1. In Figure 10, the solution profiles are shown at
different time intervals for € = 2. In Figure 11, the behaviour of solution profiles is shown for different values
of € at £ = 1 for 64 mesh points. The graphs are found to be approaching to zero as time increases. The 3D
behaviour of y(¢&, 1) for different values of € is shown in Figure 12a to 12c. In Table 3, the €-uniform rate of
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convergence is shown. It is observed that the e-uniform rate of convergence is 0.99193 to 1.0031 for 16 to 128
mesh points, respectively.

Problem 4

Consider linear advection-diffusion equation with mixed boundary conditions and

a() = B(§) = land f(¢) =0.

dy _ —9*y 3y

o oz o Y (20)

Initial and boundary conditions remain same as of the Problem 1. In Figure 13, the behaviour of solution
profiles is shown for different values of € for 32 mesh points. The solution profile for € = 0.1 converge to 1
smoothly as t increases as compare to the profiles of € = 0.01 and € = 0.001. The smoothness in the profiles for
small values of € can be obtained by increasing the number of mesh points. The 3D behaviour of y(&, 7) for
different values of € is shown in Figure 14a to 14c. In Table 4, the €-uniform rate of convergence is shown. It is
observed that the g-uniform rate of convergence is found to be 0.96819 to 0. 99567 for 8 to 64 mesh points,
respectively.

Problem 5

Consider linear advection-diffusion equation with mixed boundary conditions and

@) = LFE) =) = 0.

Yo% (21)

Initial and boundary conditions remain same as of the Problem 1. In Figure 15, the behaviour of solution
profiles is shown for different values of € for 32 mesh points. The solution profiles are found to converge to zero
smoothly as time increases. The 3D behaviour of y(¢, 7) for different values of € is shown in Figure 16a to 16c.
In Table 5, the e-uniform rate of convergence is shown. It is observed that the -uniform rate of convergence is

0.98551 to 0. 99559 for 8 to 64 mesh points, respectively.

Conclusion

Cubic Hermite collocation method is tested on various initial Value problems for different range of parametere.
The method is shown to be uniformly convergent. From these figures and tables, it is observed that the accuracy
of the method is of order (h%).

_02 r r r r I
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g
Figure 1: Behavior of Hermite cubics on the interval [&-1 &i+1] Po(&) (—), Po(£) (0), P1(&) (O), P1(¥) (A).
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Figure 2: Structure of local Hermite collocation in [&-1, &] and [&, &i+1].
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Figure 3: Each block consists of system of linear differential equations defined at j collocation point in
the sub-interval [&-1 &].

Figure 4: Behavior of y(&, 1) for € = 2** at different time intervals for Problem 1.
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Figure 5: Behavior of y(&,t) for different values of €.

4 g
Figure 6a: 3D behaviour of y(&, T) for € = 2%,
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Figure 6b: 3D behaviour of y(&, 1) for £ = 2°°.
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Figure 6¢: 3D behaviour of y(g, 1) for £ = 2°%°,
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Figure 7: Behavior of y(, t) for € = 2** at different time intervals for Problem 2.
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Figure 8: Behavior of y(&, t) for different values of .
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Figure 9b: 3D behaviour of y(&, t) for £ = 2°°.

Figure 9c: 3D behaviour of y(g, 1) for £ =220,
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Figure 10: Behavior of y(€, t) for € = 2** at different time intervals for Problem 3.
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Figure 11: Behavior of y(§, t) for different values of €.
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Figure 12a: 3D behaviour of y(¢, 1) for € = 24,
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Figure 12b: 3D behaviour of y(&, 1) for £ = 2°°.
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Figure 12c: 3D behaviour of y(&, 1) for € = 2°1°.
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Figure 13: Behavior of y(§, t) for different values of € for Problem 4.
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Figure 14a: 3D behaviour of y(&, 1) for € = 24,

4 g

Figure 14b: 3D behaviour of y(§,1) for € = 25
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Figure 14c: 3D behaviour of y(&, 1) for € = 2°1°.
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Figure 15: Behavior of y(&, 1) for different values of € for Problem 5.
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Figure 16a: 3D behaviour of y(&, 1) for € = 24,
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Figure 16b: 3D behaviour of y(&, 1) for £ = 2°°.
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g

Figure 16c: 3D behaviour of y(&, 1) for € = 2°1°.

Table 1- =-uniform error analysis for Problem 1.

Ef'

B m=38 m=16 m =32 m = 64 m =128
20 1.6900x103 4.0800x10* 1.0020x10* 2.4800x10° 6.1000x106
22 2.4920x1072 1.2597x1072 6.3530x10° 3.1940x10° 1.6018x10°®
24 1.3042x10° 4.2572x10°° 1.8113x10°® 8.6330x10* 4.2660x10*
26 3.0938x103 1.3550x10* 8.1000x106 2.0000x10”7 1.0000x1077
28 2.3303x10° 3.6600x10* 3.7600x10° 2.1000x10 1.0000x1077
210 1.3851x103 3.9390%x10* 9.5600x10 9.3000x10 3.0000x107
212 1.1296x103 3.5750x10* 1.1560x10* 2.4900x10° 1.9000x10®
21 1.0665x103 3.4640%x10* 1.0930x10* 3.5100x10° 5.9000x10¢
216 1.0508x103 3.4380%x10* 1.0580x10* 3.5900x10° 9.9000x10
218 1.0470x103 3.4310x10* 1.0480x10* 3.5300x10° 1.5100x10°
2% 1.0460x103 3.4300%x10* 1.0450x10* 3.5100x10° 1.1800x10°
E™ 2.4920x10" 1.2597x102 6.3530x10" 3.1940x10° 1.6018x10°3
p" 9.8422x101 9.8757x10* 9.9207x10* 9.9567x10*

Table 2- e-uniform error analysis for Problem 2.
B
B m=28 m=16 m =32 m = 64 m =128

20 1.4702x108 3.5300x10* 8.6800x10° 2.1600x10° 5.3000x10°¢

22 2.5127x107? 1.2837x102 6.4884x10° 3.2627x10°3 1.6360x10°°

24 2.2729x107 8.1878x10° 3.6369x103 1.7576x10°3 8.7150x10*
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26 1.2406x103 9.5400x10° 2.9600x10° 1.0800x10° 4.7000x10°¢
28 3.7452x103 6.8500x10° 2.6000x10 1.0000x1077 0.0000x10°
210 3.3890x10° 5.1600x10° 8.8000x10° 7.0000x107 1.0000x107
212 3.1610x10° 8.2000x10° 2.1500x10° 4.1000x10°¢ 3.0000x107
214 3.0930x10°3 8.1000x10° 4.2900x10° 5.4000x106 1.2000x10°
216 3.0760x10° 7.9000x10° 5.0100x10° 6.5000x10 7.0000x107
218 3.0700x103 7.9000x10° 5.2500x10° 7.0000x10 4.0000x107
2% 3.0700x10° 7.9000x10° 5.2700x10° 7.3000x10 3.0000x107
E™ 2.5127x107 1.2837x1072 6.4884x103 3.2627x103 1.6360x103
p" 9.6893x10* 9.8437x10* 9.9180x10* 9.9589x10
Table 3- e-uniform error analysis for Problem 3.
E¢
€ m=16 m = 32 m = 64 m =128 m = 256
20 5.6770x10* 1.3730x10* 2.9800x10° 1.0000x10° 4.4000x10¢
22 2.5147x107? 1.2644x107 6.3450x10° 3.1800x10°% 1.5866x107°
24 2.0353x10%2 8.8430x103 4.2300x10° 2.1000x107 1.0490x1073
26 6.1600x10* 1.7600x10* 5.7000x10° 0.0000x10° 4.4000x10°
28 3.7000x10° 1.3000%x10° 2.2000x10 0.0000x10° 2.1000x10%
2710 4.2800x10* 5.0000x10° 5.0000x10 0.0000x10° 1.0000x10°®
212 9.8500x10* 2.3000x10* 1.4000x10° 0.0000x10° 2.1000x10°
21 1.2160%x103 2.1800x10* 1.4500%x10* 0.0000x10° 2.6000x10
2716 1.2830x10° 1.7800x10* 2.2300x10* 0.0000x10° 2.7000x10°
218 1.3010%x103 1.6300x10* 1.4800x10* 1.0000x10* 2.8000x10°
220 1.3050x10° 1.5900x10* 1.5400x10* 1.0000x10* 2.9000x10°
E™ 2.5147x107 1.2644x107 6.3450x107° 3.1800x10% 1.5866x1073
p" 9.9193x101 9.9476x10 9.9659x10* 1.0031x10°
Table 4- =-uniform error analysis for Problem 4.
E"
B m=38 m=16 m =32 m = 64 m=128
2° 1.4716%10°3 3.5440x10* 8.6900x10°° 2.1500x10° 5.4000x10
22 2.5112x107 1.2836x102 6.4884x103 3.2626x10° 1.6361x10°3
2+ 2.2741x107 8.1864x10° 3.6368x10°3 1.7576x10°3 8.7140x10*
26 1.2381x1073 9.5700x10° 2.9600x10° 1.0800x10°° 4.7000x10
28 3.8221x10° 6.8600x10°° 2.7000x10 0.0000x10° 1.0000x1077
210 3.4640x10° 5.1900x10° 8.8000x10° 7.0000x1077 0.0000x10°
21 3.2323x10° 8.3100x10° 2.1200x10° 4.1000x10° 3.0000x10”
21 3.1640x10°° 8.1600x10° 4.2500x10° 5.3000x10¢ 1.3000x10°
216 3.1463x10° 8.0000x10° 5.0000x10° 6.6000x10° 6.0000x10”7
218 3.1419x10° 7.9400x10° 5.2100x10° 7.1000x10¢ 4.0000x107
220 3.1407x10° 7.9300x10° 5.2600x10° 7.3000x10¢ 3.0000x107
E™ 2.5112x107 1.2836x1072 6.4884x103 3.2626x10°° 1.6361x10°3
p" 9.6819x10* 9.8423x10* 9.9184x10* 9.9576x10*
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Table 5- e-uniform error analysis for Problem 5.

Eg'

B m=38 m=16 m =32 m = 64 m =128
20 2.6208x107 6.3130x10* 1.5470x10* 3.8300x10° 9.5000x10
22 3.8539x107 1.9464x1072 9.8153x10° 4.9345%10°3 2.4748x10°%
24 2.0994x107 6.6237x103 2.8012x10° 1.3339x10°3 6.5900x10*
26 2.0436x10° 4.8600x10-5 1.3000x10° 5.0000x107 3.0000x107
28 1.4490x10* 1.5690x10* 7.6000x10° 1.0000x10°7 0
210 1.7878x10°3 3.3700x10* 3.4100x10° 1.8000x10° 1.0000x1077
212 2.2090x10° 4.2570x10* 5.8000x10° 6.7000x106 7.0000x10”7
214 2.3114x10° 4.4590x10* 7.5400x10 4.7000x10® 1.8000x10®
2716 2.3367x10° 4.5030x10* 8.1500x10° 5.6000x106 8.0000x10”7
218 2.3430x10° 4,5130x10* 8.3200x10° 6.1000x10® 1.9000x10®
220 2.3445x10° 4.5170x10* 8.3600x10° 7.0000x106 3.0000x10
E™ 3.8539x1072 1.9464x107? 9.8153x10° 4.9345x107 2.4748x1073
p" 9.8551x10* 9.8770x10* 9.9213x101 9.9559x10*

Conclusion

A numerical scheme based on CHCM has been presented for the solution of Initial value problem. Numerical
results demonstrate the stability and accuracy of the method for any value of €. From these figures and tables, it
is observed that the accuracy of the method is of order (h*). This method is easy to implement and yields very
accurate results.
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